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Abstract. We study the stationary state of a Poisson problem for a system ofN perfectly
conducting metal balls driven by electric forces to move within a medium of very low electrical
conductivity onto which charges are sprayed from outside. When grounded at a confining
boundary, the system of metal balls is experimentally known to self-organize into stable fractal
aggregates. We simulate the dynamical conditions leading to the formation of such aggregated
patterns and analyse the fractal properties. From our results and those obtained for steady-state
systems that obey minimum total energy dissipation (and potential energy of the system as a
whole), we suggest a possible dynamical rule for the emergence of scale-free structures in nature.

1. Introduction

The key elements for the ubiquitous appearance of natural phenomena lacking a spatial
and/or temporal scale remain a mystery. Self-organized criticality [1–3] represents a basic
attempt towards the elucidation of a general mechanism responsible for scale and time
invariance in a variety of phenomena in diverse fields including physics, biology, geophysics
and economics. An alternative view has been postulated on the basis of fractal forms
occurring in natural river basins and in domain walls of random ferromagnets [4–8]. It
has been speculated that chance and necessity, defined by an imperfect strive for global
optimality of open, dissipative systems could be elements for some forms of natural fractal
growth. In this paper, we study the scale-free stationary states resulting from the dynamics
of an open electric system. The steady-state configuration corresponding to minimum total
potential energy is a periodic non-fractal structure. Our findings suggest a rule for the
emergence of fractality that encompasses dynamical problems with a global constraint.

We propose a model for the spontaneous aggregation of metal balls floating in a viscous
liquid with a high dielectric constant. Electric charges sprayed onto the poorly conducting
still fluid are transported to a grounded confining ring by the metal balls. Such aggregation
has been observed [9, 10] in cylindrical cells consisting of a layer of castor oil (because of
its high dielectric constant) within an acrylic dish confined by a layer of air above. The
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inner perimeter of the dish was equipped with a grounded metal ring. A strong potential
between a metallic tip and this ring was fixed and charges were sprayed quasihomogeneously
upon the oil surface. Inside the dish there were metallic bearing balls, which spontaneously
arrange themselves under the influence of electric forces that lead to the transportation of
charges to the metal ring. It is relevant to our computations that the reference experiment
was repeated several times for different numbers of balls and, at stationary conditions, the
aggregated structures showed fractal properties [9, 10].

2. Description of the model

Our model consists ofN particles (the metal balls of experiment [9, 10]) in a domain0
with N0 (� N ) sites in a 2− d square lattice. The particles are charged (due to constant
injection of charges from outside) and are subject to the force due to the electric potential
ϕ(x) which obeys the Poisson equation

∇2ϕ = −S0/σ0 = ρ(x) (1)

whereS0 is the source term,σ0 is the specific conductivity of the medium andρ is the
charge density. Equation (1) follows from charge conservation and Ohm’s law [9, 10]. The
charge density is assumed to be constant in space (i.e. perfectly homogenous spraying of
charges) and, by a suitable rescaling of the fieldϕ, its value may be assumed equal to 1 and
is immaterial as long as it is not zero. The Laplacian in equation (1) is a lattice discretization
of the corresponding continuum operator and it is computed assuming an eight-neighbour
scheme (four neighbours along the vertical and horizontal directions and four along the
diagonals).

Poisson’s equation (1) is solved [11] with the boundary conditionϕ(∂0′) = 0, where
∂0′ includes the boundary,∂0, of 0 and all of the sites in0 which are occupied by a particle
connected to∂0 through other particles. The particles in∂0 are immobile. This assumption
considerably reduces the more complex system studied in [9, 10], and is qualitatively akin
to the experimental conditions where the difference in electrical conductivity between the
metal balls and the embedding castor oil is quite large.

Initially the N particles are placed at random in0 and ∂0′ = ∂0, i.e. no particles
are in contact with the boundary. The potentialϕ(x) is computed at allN0 sites by
solving equation (1) with boundary conditionϕ(∂0) = 0. Particles not belonging to
∂0′ are considered immaterial to the evaluation ofϕ because of their assumed very large
conductivity. The gradient∇µϕ(x) in all eight directions (µ = 1, . . . ,8), at all sitesx
(6∈ ∂0′) is now computed. The largest value|∇µ̂ϕ(x)| is then found and the corresponding
particle is moved in the direction̂µ (in case such a move caused double occupancy of a cell
the site with the next largest value of|∇ϕ(x)| is selected instead, and so on). This is then
repeated until a particle becomes a neighbour of the boundary∂0′ and thus a part of the
boundary. Whenever this occurs the potentialϕ(x) must be recomputed due to the change
in boundary conditions. This process is repeated until all the particles eventually become
part of the boundary.

Other dynamics may be used in which all the particles are moved simultaneously in
the direction of the maximum gradient. The stationary configurations that emerge are
qualitatively similar to those obtained through the procedure described here.

It is crucial that at stationary conditions for the arbitraryith metal ball located at
x = qi , (i.e. whenq̇i = q̈i = 0) the total potential energyW ∝ ∫

0
ϕ dx is at a minimum

with respect to the arrangement of the metal balls (i.e.∇qiW = 0) [9, 10]. Furthermore, the
system configuration that minimizesW also exactly minimizes the total energy dissipation
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P ∝ ∫
0
|∇ϕ|2dx [9, 10]. The above framework relates directly to other contexts, where

scale invariance was argued to arise as a consequence of frustrated optimality [6].
The computation of the potentialϕ(x) allows the determination of the total electric

resistance, sayR which, in the experiment, had been shown to scale with the numberN of
metal balls asR ∝ N−ξ . Box counting and cluster dimensions of the sets formed by the
connected aggregates were also computed and the scaling ofN1(l), the number of boxes
of size l making up the structure, and ofN2(r), the number of balls inside a radiusr was
studied.

Technically, the solution of a Poisson equation at each timestep implies a considerable
numerical burden and an efficient numerical scheme had to be employed. Finite difference
approaches require the solution of aL2 × L2 linear system, whereL is the size of the
lattice. The accelerated conjugate gradient technique [11], although very efficient when a
single solution is required, does not take advantage of the fact that two successive fields
only have modest differences due to the local variation of the boundary conditions. A
combined use of a relaxation technique and an initial direct solution proved computationally
more advantageous, since it bypasses the slow relaxations when first solving the equations,
and updates, given the modified boundary conditions, the configuration ofϕ(x) quickly
converging. Note that the improvement in efficiency was especially critical when exploring
a substantial number of possible perturbations of a given arrangement obtained from the
dynamics to test its optimality.

3. Numerical experiments

We have run several simulations of the dynamics of the system where initially theN balls
are randomly distributed over the domain0, and have obtained consistent fractal patterns
for the aggregate arrangement of the grounded elements. Figure 1 shows one realization of
the final potential field, in this case related to a square domain grounded at its centre (i.e.
∂0 consists of a single site) whereN = 2048 aggregated metal balls are employed. We
have used these particular boundary conditions, at no cost of generality, to compare the final
structure with an exact optimal arrangement described below. The shades of grey in figure 1
are related to the local value of the potentialϕ(x). We have examined in detail the statistics
of the resulting aggregates at different densitiesN/N0. Figure 2 shows sample results of
finite-size scaling analyses related to the estimation of box-counting dimensions [12] and
the mass dimensionDm [13]. We have also computed the scaling exponentξ of total
resistance,R ∝ N−ξ [9, 10]. Nevertheless it is not possible to compare scaling exponents
from our numerical simulations and observations. In fact, the dynamical model is simple
and does not capture all the experimental details. We have made simplifying assumptions
for computational convenience, for example infinite electric conductivity of the metal balls,
zero mechanical inertia of the metal balls and infinite cohesive forces among the grounded
balls.

In the case of figure 1 (N = 2048) for a square grid of sizeL = 128, the box-counting
exponent isD = 1.30, the mass dimensionDm = 1.63 (figure 2) and the scaling exponents
of resistances isξ = 2.00. In this case the total potential energy isW = 14.9 (in arbitrary
units) and in all realizations with the same boundary conditions and numberN the final
value ofW is within a few units. The statistics of the algebraic laws are robust. We
have also tested circular and square domains grounded at the outer boundaries—one obtains
DLA-like dendrites issuing from the centre with similar results. Note that in all cases the
dynamics is not stochastic, which is different from the cases of DLA and DBM [14, 15].

As one expects, the global minimum is unlikely to be accessible by the dynamics. In
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Figure 1. A realization of the potential field withN = 2048 metal balls within a 128× 128
grid grounded at the central siteP (i.e. ϕ(P ) = 0). In the inset we show the planar aggregation
structure of the grounded metal balls. The total potential energy isW = 14.0 (in arbitrary units).

fact the structure having minimum total potentialW, which we have found exactly for
regular geometries is characterized by great regularity and substantially different scaling
exponents (figure 3). (It can be shown that a regular grid ofN connected grounded points
is the global minimum of total potentialW. The proof proceeds from a one-dimensional
situation in which the arrangement of arbitraryN grounded points within a field obeying
ϕ′′ = 1 pinched to zero at the boundaries is a regularly spaced array of zeros. The extension
to two dimensions comes from the separation of variables of the two-dimensional Poisson
equation and the requirement of connectivity of the grounded structure.) In the case of the
square domain occupied byN = 2048 connected sites of zero potential, a regular grounded
lattice yields the optimal energyW = 5.60, and a box counting and mass exponents
D = Dm = 2.00, outside the error bars of dynamically accessible states.

The resulting structures, in all cases, do indeed correspond to local minima of the total
potential energy. Hence, in the known case of a regular arrangement and in analogy with
other physical processes [6–8, 16], imperfect optimal search procedures yield local optima
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Figure 2. (a) Box-counting scaling relationships,N1(l) ∝ l−D , for a varying number of
balls within a 128× 128 domain. Note the consistency in the slopes; (b) the computation
of the mass dimensionDm requires the evaluation of the exponent of the scaling relationship
N2(r) ∝ rDm whereN2(r) is the number of balls falling within a circle of radiusr seeded at
P . The computation was carried out over several realizations obtained for 2048 metal balls
on a 128× 128 gridded domain. The departure from a power law for larger is due to finite-
size effects. In all plots larger symbols indicate the ensemble mean while dots indicate single
realizations.

showing scaling properties to be quite different from those of the true ground state. In a
general case, the exact properties of the ground state are unknown, and thus we have used
refined annealing procedures [17, 18] starting from the self-organized aggregates to search
for optimal aggregation. This procedure uses a randomized approach in the exploration
of the values of the objective function in order to avoid being trapped in local minima
and it is known to ensure the achievement of values close to the absolute minimum. The
arrangements obtained through this optimal search also show significant departures from
the features of the initial structure.

4. Conclusions

The numerical experiments described earlier seem to indicate that the type of optimization
which is dynamically feasible in nature is rather myopic, that is, willing to accept changes
only if their impact is favourable in the immediate rather than in the long term. Whether
or not dynamical rules necessarily obey a variational principle, and thus whether fractal
forms in nature are or are not metastable states of a dynamical search for optimality, our
results suggest that one ingredient for the emergence of fractality is the existence of a set of
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Figure 3. Potential field arising from a regular, grid-like arrangement ofN = 2048 metal balls
within a centre-grounded square 128× 128 domain.W = 5.6 (in the same units employed
for the system in figure 1) and is substantially lower than the values obtained by spontaneous
self-organization and by imperfect optimal search techniques.

stationary or recursive states satisfying a global constraint. In this case the constraint is the
dissipation of the injected charge through the boundaries. It is thus possible that, in some
cases, local interactions may yield a globally felt constraint through boundary conditions.
The system studied here is analogous to glasses. There, the ground state is known to be a
crystal but on rapid quenching of a liquid, the dynamics inhibit crystallization and a glassy
structure (which is not fractal) is obtained. The key difference here is that the boundaries
impose a global constraint which results in the metastable states becoming scale free over
a certain range of lengthscales.

We are indebted to Ignacio Rodriguez-Iturbe, Riccardo Rigon and Marek Cieplak for
stimulating discussions. This work was supported by grants from NATO, CNR-GNDCI
(Progetti MIEP-METEO, Linea 1) and MURST 40%.
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